Biomedical Engineer

As the name suggests, biomedical engineering is a branch of engineering that combines biology, medicine, and engineering to help improve human health. Tasked with developing biomedical equipment, biomedical engineers also responsible for installation, maintenance, and technical support of equipment. They might also develop computer software, systems, and devices used in healthcare.

There are various subfields in which biomedical engineers might work. Some of them are involved in improving and developing new machinery, such as robotic surgery equipment, while others create more reliable replacement limbs. These engineers often work as part of a team and are sometimes seen in a supporting or supervisory role.

Although the expertise of biomedical engineers primarily lies in biology and engineering, they also design computer software for running instruments, such as a three-dimensional x-ray machine. Additionally, a number of biomedical engineers use their knowledge of biology and chemistry for developing new drug therapies. Their work may also involve using statistics and math to build models to understand different body systems, such as the transmission of signals by the brain. Some biomedical engineers may also be involved in sales.

Biomedical engineers generally work full time in hospitals, manufacturing, universities, and research facilities of companies, and medical and educational institutions.

Specializations & Degree Types in Biomedical Engineering

The following are examples of specialty areas within the field of biomedical engineering:

  • Bioinstrumentation – This specialization uses computer science, electronics, and measurement principles for developing instruments used in the treatment and diagnosis of medical problems.
  • Biomaterials – This involves the designing and developing of materials fit to be used within the human body.
  • Biomechanics – This includes mechanics, such as thermodynamics, for solving medical or biological problems.
  • Clinical engineering – Professionals in this specialization work alongside nurses, physicians, and other medical experts in the operation and implementation of technology in healthcare. They are responsible for taking care of the medical products in healthcare facilities.
  • Rehabilitation engineering – This involves the study of computer science and engineering to develop devices that assist individuals in recovering from cognitive and physical impairments.
  • Systems physiology – This uses engineering tools for understanding how systems within living organisms function and respond to changes in their environment.

Admission Requirements to Biomedical Engineering Programs

Generally, the minimum requirement for becoming a biomedical engineer is a bachelor’s degree. Some positions in leadership and research may require a master’s degree or PhD.

To enter biomedical engineering bachelor’s programs, candidates are required to have a high school diploma or GED, in addition to the SAT or ACT scores. For a master of science (MS) in biomedical engineering program, students must have a bachelor’s degree in biomedical engineering (or a related field) from an accredited college or university, a minimum grade point average of 3.0 on a 4.0 scale, a completed application form, transcripts from all universities attended, GRE exam scores (for some colleges), letters of recommendation, statement of purpose, a current resume, and TOEFL scores for international students.

Applicants to biomedical engineering programs must be adept at designing, have an analytical bent of mind, be comfortable with measuring instruments, pay attention to detail, be able to empathize with patients, and finally, be effective communicators and team players.

Program Accreditation in Biomedical Engineering

Accreditation is proof that a program has met essential standards for producing graduates who are ready to enter the critical fields of STEM education. It is important because it helps program aspirants determine whether a program meets certain minimum standards of quality. It also helps employers vet candidates, as applicants from accredited universities are bound to be more qualified and well-trained.

Many programs in biomedical engineering are accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology, Inc. (ABET). Students graduating from an ABET-accredited program are capable of leadership and have a strong foundation in their educational field. ABET is recognized by the Council for Higher Education Accreditation (CHEA).

On-Campus Degree Programs in Biomedical Engineering

Boston University

Boston University offers a bachelor of science (BS) in biomedical engineering. The program provides students with rigorous training in mathematics, engineering, and basic science. The program is taught by renowned and experienced faculty members.

Admission requirements for the program include a completed admission application, high school transcripts, senior year grades, a counselor recommendation and school report form, a teacher evaluation, standardized tests, and English proficiency testing results for international students.

​Made up of 133​ credit-hours, the program is designed to make students well-equipped in solving problems related to environmental, economic, ethical, social, and legal issues. The curriculum includes courses such as ​general chemistry, an introduction to programming for engineers, an introduction to engineering, computational linear algebra, engineering mechanics, an introduction to engineering design, and statistics and data sciences for engineering.

Through the program, students learn how to solve complex engineering problems, communicate clearly with different audiences, conduct appropriate experimentation, and make informed decisions. At the end of the program, graduates are prepared to take up careers in the areas of engineering, science, healthcare, and business.

  • Location: Boston, Massachusetts
  • Accreditation: ABET
  • Expected Time to Completion: 48 to 60 months
  • Estimated Tuition: $54,720 per year

Florida International University

Florida International University offers a bachelor of science in biomedical engineering. In addition to a general track, the school offers concentrations in biomechanics and biomaterials, biosignals and systems, and tissue engineering and pre-med.

Major admission requirements for the program include submitting an application, proof of an associate in arts (AA) degree or its equivalent, and a minimum score of 500 on the paper-based TOEFL for international students whose native language is not English. Continuing FIU students and transfer students must complete all pre-core courses such as general biology and general chemistry, and achieved a minimum of “C” and an average grade point average of at least 2.5 in all common prerequisite courses taken.

The 128 credit-hour program includes courses such as an introduction to biomedical engineering, an introduction to biomedical engineering computing, an evaluation of engineering data, applied mechanics, and biomaterials science.

Students learn to use engineering design solutions to biomedical engineering problems, work efficiently in a team, conduct experiments, interpret data, and communicate effectively.

On successful completion of the program, graduates can take up roles as quality engineers, manufacturing engineers, and software engineers.

  • Location: Miami, Florida
  • Accreditation: ABET
  • Expected Time to Completion: 48 to 60 months
  • Estimated Tuition: $618.87 per credit-hour

Online or Hybrid Degree Programs in Biomedical Engineering

Columbia University

Columbia University offers an online master of science (MS) in biomedical engineering program.

Applicants to the program must have an undergraduate degree in science, engineering, computer science, mathematics, or a related field from an accredited institution, a minimum grade point average of 3.0, GRE scores, three letters of recommendation, transcripts, a current resume, and TOEFL test scores for international students.

The program comprises 30 credit-hours. Courses include the computational modeling of physiological systems, solid biomechanics, artificial organs, cardiac mechanics, computational genomics, solid biomechanics, and ultrasound in diagnostic imaging.

The master’s program prepares students to become innovative, socially responsible leaders in science, medicine, and engineering. They are also trained to conduct research. The program prepares them for research activities at the highest level. Graduates of the program can take up leadership roles in medicine, engineering, development, and clinical practice.

  • Location: New York, New York
  • Accreditation: Middle States Commission on Higher Education
  • Expected Time to Completion: 12 to 24 months
  • Estimated Tuition: $2,104 per credit-hour

Colorado State University

Colorado State University offers an online master’s in biomedical engineering program. This program is offered in a flexible online format and is convenient for working professionals. The program is taught by expert faculty members who have a wealth of research and industry knowledge in topics like biomaterial tissue engineering, nanotechnology, and bone biology and mechanics.

The program’s admission requirements include a bachelor of science degree in engineering, life sciences, or natural sciences from a regionally accredited institution; a grade point average of 3.0 or higher; prerequisite courses (calculus 1, 2, and 3, ordinary differential equations, physics 1 and 2, one semester of life science), three letters of recommendation, a current resume, statement of purpose, a completed online graduate application, one official transcript of all collegiate work completed from every institution attended, and English language proficiency for international students.

Consisting of 30​ credit-hours, courses in the program include bioengineering, quantitative systems physiology, biological physics, materials engineering, cardiovascular biomechanics, digital signal processing, and regression models and applications.

Students get a chance to explore the function of biomaterials, data analysis, and material issues in mechanical design. They learn how to solve complex problems and improve healthcare technology in every sphere, right from diagnostics to treatment.

At the end of the program, graduates can pursue opportunities in a wide range of industries such as pharmaceutical preparation manufacturing, analytical lab instruments manufacturing, biological product manufacturing, engineering services, surgical and medical instrument manufacturing, and electromedical and electrotherapeutic apparatus manufacturing. Some of the roles they can take up include biomedical engineer, biomedical electronics technician, biomedical engineering director, biomedical equipment technician, quality engineer, and software engineer.

  • Location: Fort Collins, Colorado
  • Accreditation: Higher Learning Commission of the North Central Association
  • Expected Time to Completion: 12 to 24 months
  • Estimated Tuition: $964 per credit-hour

How Long Does it Take to Become a Biomedical Engineer?

The most basic requirement for becoming a biomedical engineer is earning a bachelor’s degree in biomedical engineering. Generally, it takes four to five years to complete a bachelor’s degree. On completion of this degree, students can take up an entry level job in the field. Students who wish to deepen their understanding of the field can also opt for a two-year graduate degree in biomedical engineering.

How To Become a Biomedical Engineer – Step-by-Step Guide

Biomedical engineers improve medical care and affect patients’ lives through engineering and technology. An education in biomedical engineering blends studies in medicine, biology, and technology. The minimum educational requirement is a bachelor’s degree in biomedical engineering, while some biomedical engineers have graduate degrees as well.

The following is a step-by-step guide to become a biomedical engineer:

Step 1: Graduate From High School (Four Years)

First, those who wish to work as biomedical engineers should earn a high school diploma or a GED. This is a requirement at almost all universities or colleges. Students will be required to take courses focusing on biochemistry, biology, physics, mathematics, and any other related subjects during their high school diploma.

Step 2: Earn and Undergraduate Degree in Biomedical Engineering or a Related Discipline (Four Years)

The second step involves enrolling in a four-year biomedical engineering degree. Students can also opt for a bachelor’s degree in any other field of engineering if they are planning to take on a graduate degree in biomedical engineering later on. While it is not a requirement to undertake an ABET-accredited program (Accreditation Board for Engineering and Technology, Inc.), it is a necessity if one wishes to obtain a professional engineering license.

Following graduation, students interested in earning their PE license should take the Fundamentals of Engineering (FE) exam, the first step toward becoming an Engineer in Training (EIT) and earning the PE credential.

Step 3: Get Work Experience (At Least Four Years to Qualify for PE License)

The third step involves gaining employment or work experience in the field after completing a bachelor’s degree. While this is not a requirement, it always helps to gain practical, hands-on experience and those who wish to earn their Professional Engineer (PE) license must have at least four years of experience.

Step 4: Earn a Graduate Degree in Biomedical Engineering (Optional, One Year or More)

The fourth step is earning a graduate degree in biomedical engineering. This will make students eligible for more lucrative opportunities. While a graduate degree is not necessary for entering the field, it will help students get a better understanding of the subject. A master’s degree can be completed in one or two years, while a doctoral degree takes three or more years of full-time study.

Step 5: Get One’s PE License (Optional, Timeline Varies)

The last step is earning a Professional Engineering (PE) license from one’s state board, which helps engineers advance their career. As mentioned, biomedical engineers must have at least four years of working experience before they become eligible to obtain a PE license. Please note that while there is no biomedical engineering specialization available, there are related exams in biological, chemical, and mechanical engineering.

What Do Biomedical Engineers Do?

Biomedical engineers combine biological and medical sciences with engineering for designing and creating equipment, computer systems, devices, and software used in healthcare.

Their typical responsibilities include the following:

  • Designing biomedical equipments and devices such as machines for diagnosing medical problems
  • Installing, adjusting, maintaining, repairing, or providing technical support for biomedical equipment
  • Evaluating the safety, effectiveness, and efficiency of biomedical equipment
  • Training clinicians and other personnel for using biomedical equipment correctly
  • Exploring how engineering is related to human as well as animal biological systems
  • Writing technical reports, preparing procedures, publishing research papers, and making recommendations based on research findings
  • Presenting research findings to engineers, clinicians, scientists, hospital management, and the public

Biomedical Engineer Certifications & Licensure

All students who want to work as biomedical engineers should consider taking professional licensure for maximizing their chances of getting a valuable job and validating their abilities. According to the Biomedical Engineering Society, biomedical engineers do not have state licensing, although some of them may be licensed as professional engineers (PEs).

According to the National Society of Professional Engineers, the following steps are required for earning a professional engineer license:

  • Earning a four-year degree in engineering from an accredited engineering program
  • Passing the Fundamentals of Engineering (FE) exam
  • Completing four years of engineering experience under a professional engineer
  • Passing the Principles and Practice of Engineering (PE) exam

According to the American Society for Health Care Engineering (an association for professionals who build and maintain hospitals and other healthcare organizations), there are two types of voluntary certifications available for biomedical engineers working in hospitals. The first certification is clinical engineer certification (CCE), which is jointly awarded by the U.S. Board of Examiners for Certification in Clinical Engineering and Healthcare Technology Certification Commission. The second one is the biomedical equipment technician certification (CBET), which is administered by the International Certification Commission for Clinical Engineering and Biomedical Technology.

Biomedical Engineer Salary

According to the U.S. Bureau of Labor Statistics (2019), the median annual wage for biomedical engineers is $88,550. Workers in the lowest 10 percent bracket earned less than $51,890, while those in the highest 10 percent bracket earned more than $144,350. The number of biomedical engineering jobs in 2018 was 19,800 across the country.

Farheen Gani

Farheen Gani


Farheen is a freelance writer, marketer, and researcher. She writes about technology, education, and marketing. Her work has appeared on websites such as Tech in Asia and Foundr, as well as top SaaS blogs such as Zapier and InVision. You can connect with her on LinkedIn and Twitter (@FarheenGani).